Introduction to Heat Wave Indices

WMO Workshop, Barbados 17 Feb, 2016

Dr. Adam J. Kalkstein
WMO CCI Expert Team on Sector-specific Climate Indices (ET SCI)
Department of Geography and Environmental Engineering
United States Military Academy

The dangers of excessive heat

- Heat is the leading weather-related killer in the United States
- Recent years have seen tens of thousands of people killed in Russia (2010) and Europe (2003)
- 2015 Indian heat wave

Increase in mean and variance

Probability of occurrence

The problem:

- Impacts of heat waves are extensive
- No universal way of measuring them - many different indices
- So how did ET-SCI decide on which ones to use?

"Universal" Definition of a Heat Wave

 A prolonged period of excessive heatWhat defines prolonged?

What defines excessive?

Why should it matter?

What else should we consider?

Some examples of heat wave definitions

- ETCCDI: 5 or more days that are above $90^{\text {th }}$ percentile average T
- Some regions use fixed indices (5 days $>35^{\circ} \mathrm{C}$, 3 days $>40^{\circ} \mathrm{C}$)
- Some definitions include humidity as well as temperature
- Others include spatial extent; cumulative heat
- Difficult to make consistent statements, both now and future projections
- What about non-summer excess heat events?? Are they heatwaves too?

What makes a good heat wave index?

What makes a good heat wave index?

- Relative threshold (based on climate of the region)
- Consecutive days (although individual hot days can be important too)
- Be based (at least) on temperature
- Consider all aspects of heat waves (intensity, frequency, duration, timing, spatial extent?)
- Simplicity - be user friendly
- Have impact

Is it possible to have one universal index? $\mathrm{NO!}$

Definitions 1 and 2: CTX90pct/CTN90pct

- Based on daily maximum (minimum) temperature
- Consecutive days exceeding the $90^{\text {th }}$ percentile (15-day moving window)
- Detect out of season events (i.e. warm spells) and summer events
- Representing different peaks of the diurnal cycle
- Derived from ETCCDI indices....

$35^{\circ} \mathrm{C}$ Tmax

 number/year

90pct Tmax

95pct Tmin

90pct Tmin

Definition 3: EHF (excess heat factor)

- Considers daily Tmax AND Tmin:
$\boldsymbol{T}=($ Tmax $+T$ min $) / 2$
- Includes an acclimatization factor (monthly):

EHI (accl. $)=\left(\boldsymbol{T}_{i}+\boldsymbol{T}_{i-1}+\boldsymbol{T}_{i-2}\right) / 3-\left(\boldsymbol{T}_{i-3}+\ldots+\boldsymbol{T}_{i-32}\right) / 30$

- And a significance factor:

EHI(sig.) $=\left(\boldsymbol{T}_{i}+\boldsymbol{T}_{i-1}+\boldsymbol{T}_{\boldsymbol{i}-2}\right) / 3-\boldsymbol{T}_{95(\text { (lim) }}$
EHI(sig.) $=\left(\boldsymbol{T}_{i}+\boldsymbol{T}_{i-1}+\boldsymbol{T}_{i-2}\right) / 3-\boldsymbol{T}_{90(\text { cal }}$

- Which are combined:
$E H F=\max [1, E H I($ accl. $) \times E H I($ sig.) $]$
- Interested in POSTIVE EHF values only
- Original calculation geared towards summer events

Excess Heat and Heat Stress matter

Excess Heat Factor (EHF) developed by the Bureau of Meteorology ${ }^{1}$

EHF = Excess Heat x Heat Stress

3 consecutive days where daily mean temperatures $>$ 95th percentile

How hot were the preceding 30 days by comparison?

EHF impacts

Ambulance call outs

Excess Mortality

Adelaide Heat Mortality and Excessive Heat Factor

Based on the three definitions, a heat

 wave occurs when the threshold is exceeded/positive conditions occur for
AT LEAST 3 consecutive days

We have identified days where the:

- Tmax/Tmin 90th percentile is exceeded
- Where EHF values (based on Tave) are positive

What other information do we require?

- HWF - sum of days participating in an event
- HWN - frequency of events
- HWD - length of longest event
- HWA - Hottest day of hottest event (anomaly against seasonal mean)
- HWM - average magnitude of all events (anomaly against seasonal mean)
- Calculated for summer heatwaves and annual warm spells
- Separately for each definition

	35	HWN (EHF/CTN90pct/ CTX90pct)	Heat wave number	The annual number of summer (Nov-Mar in SH and May-Sep in NH) heat waves where conditions persist for at least 3 consecutive days per the definitions of EHF/CTN90pct/CTX90pct in Appendix B	Number of events	N	H, AFS, WRH
	36	HWD (EHF/CTN90pct/ CTX90pct)	Heat wave duration	The length of the longest summer (Nov-Mar in SH and May-Sep in NH) heat wave where conditions persist for at least 3 consecutive days per definitions per the definitions of EHF/CTN90pct/CTX90pct in Appendix B	days	N	H, AFS, WRH
	37	HWF (EHF/CTN90pct/ CTX90pct)	Heat wave day frequency	The total number of days each summer (Nov-Mar in SH and May-Sep in NH) that contribute to all heat waves where conditions persist for at least 3 consecutive days per definitions per the definitions of EHF/CTN90pct/CTX90pct in Appendix B	days	N	$\mathrm{H}, \mathrm{AFS},$ WRH
	38	HWA (EHF/CTN90pct/ CTX90pct)	Heat wave amplitude	The hottest day of the hottest summer (NovMar in SH and May-Sep in NH) heat wave where conditions persist for at least 3 consecutive days per definitions per the definitions of EHF/CTN90pct/CTX90pct in Appendix B	$\left({ }^{\circ} \mathrm{C}^{2} \mathrm{EHF}\right)$	N	$\mathrm{H}, \mathrm{AFS} \text {, }$ WRH
	39	HWM (EHF/CTN90pct/ CTX90pct)	Heat wave mean	Average magnitude of all heat wave days (Nov-Mar in SH and May-Sep in NH) heat wave where conditions persist for at least 3 consecutive days per definitions per the definitions of EHF/CTN90pct/CTX90pct in Appendix B	$\left({ }^{\circ} \mathrm{C}^{2} \mathrm{EHF}\right)$	N	$\mathrm{H}, \mathrm{AFS} \text {, }$ WRH
	40	$n \mathrm{TX}_{\mathrm{b}} \mathrm{nTN}_{\mathrm{b}}$	User-defined consecutive number of cold days and nights	Annual count of n consecutive days where both $\mathrm{TX}<5^{\text {th }}$ percentile and $\mathrm{TN}<5^{\text {th }}$ percentile where $\mathrm{n}>=2$ and $\mathrm{n}<=10$?	Number of events	N	H, AFS

